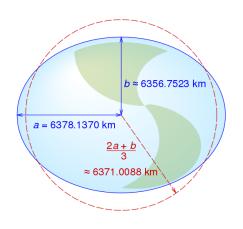

An Introduction to the Polar Motion

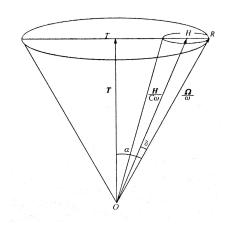
Wang Zheng-Yi


Department of Astronomy, Beijing Normal University

November 22, 2021

What is polar motion?

TRS in rigid body approximation


Inertia tensor of earth in TRS:

$$\mathbb{J} = \operatorname{diag}\{A, B, C\}$$

Where A = B < C

The ideal frame of ITRS is based on Tisserand mean axis.

3 poles of Earth

Where $\omega = \mathbf{\Omega} \cdot \mathbf{T}$

- T Tisserand mean pole
- lacksquare H Angular momentum pole
- lacktriangleright R Angular velocity pole of Earth

$$\alpha \approx 0.2$$
", $\delta \approx 0.7$ mas

$$\frac{\bar{T}H}{\bar{H}R} = \frac{A}{C-A} = 304.4$$

Figure: Vector cones of Earth rotation.

Polar motion

The polar motion is defined as position of pole H in TRS, and we adapt a polar motion vector $\vec{\rho}$ (before H.Jeffreys,1963 & Atkinson,1975):

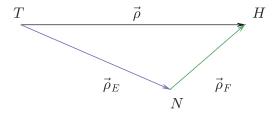


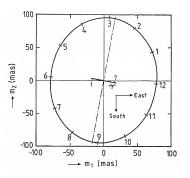
Figure: Where $\vec{\rho}$ is polar motion, $\vec{\rho}_E$ is free component while $\vec{\rho}_F$ forced component, N is the CIP

polar motion of CIP in ITRS

■ **Euler period** (Assume that Earth is a rigid body):

$$\frac{2\pi}{\omega} \frac{A}{C - A} = 303.6d$$

Where $\omega = \mathbf{\Omega} \cdot \mathbf{T}$


Chandler wobbling:

Period: $\tau_C=435\mathrm{d}$ and Amplitude :0.1" -0.2" Newcomb think it is Euler free polar motion with solid earth

Wang Zheng-Yi (BNU)

Annual component

Annual component m of polar motion is a forced motion excited predominantly by atmospheric dynamics. (H.Volland, 1994)

$$m{m} = -rac{
u_C B \tilde{p}}{2} \left[rac{e^{i\ell\Omega_a(t-t_0)}}{\ell - \nu_C} - rac{e^{-i\ell\Omega_a(t-t_0)}}{\ell + \nu_C}
ight] e^{i\lambda_0}$$

Where $\nu_C=1/\tau_C=0.83 {\rm yr}^{-1}$ is Chandler frequency, $B\approx 29.0 {\rm mas/hPa}$, $t_0=-0.07 {\rm yr}$, $\lambda_0=170^{\circ}$

How is polar moving?

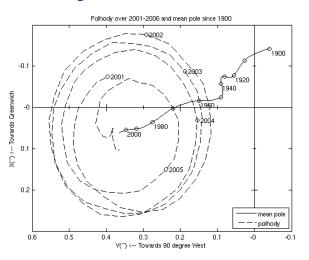
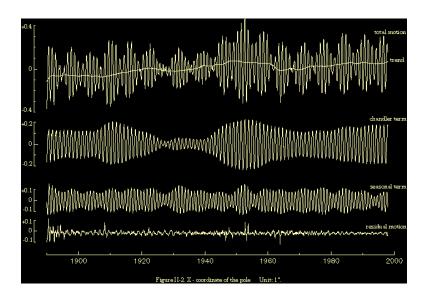
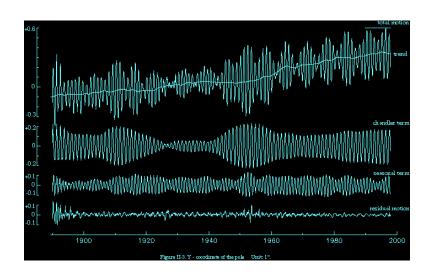




Figure: Polar motion 2001-2006 provided by the former Central Bureau 1st Jan. 2001.

X component

Y component

THANKS FOR LISTENING!